首页> 外文OA文献 >Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh
【2h】

Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh

机译:非结构网格上格子Boltzmann方法的最小二乘有限元格式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A numerical model of the lattice Boltzmann method (LBM) utilizing least-squares finite-element method in space and the Crank–Nicolson method in time is developed. This method is able to solve fluid flow in domains that contain complex or irregular geometric boundaries by using the flexibility and numerical stability of a finite-element method, while employing accurate least-squares optimization. Fourth-order accuracy in space and second-order accuracy in time are derived for a pure advection equation on a uniform mesh; while high stability is implied from a von Neumann linearized stability analysis. Implemented on unstructured mesh through an innovative element-by-element approach, the proposed method requires fewer grid points and less memory compared to traditional LBM. Accurate numerical results are presented through two-dimensional incompressible Poiseuille flow, Couette flow, and flow past a circular cylinder. Finally, the proposed method is applied to estimate the permeability of a randomly generated porous media, which further demonstrates its inherent geometric flexibility.
机译:建立了利用空间最小二乘有限元法和及时Crank-Nicolson法的格子Boltzmann方法(LBM)的数值模型。通过使用有限元方法的灵活性和数值稳定性,同时采用精确的最小二乘法优化,该方法能够解决包含复杂或不规则几何边界的区域中的流体流动。对于均匀网格上的纯对流方程,推导了空间的四阶精度和时间的二阶精度。 von Neumann线性化稳定性分析则暗示了高稳定性。通过一种创新的逐个元素方法在非结构化网格上实现,与传统的LBM相比,该方法需要更少的网格点和更少的内存。通过二维不可压缩的Poiseuille流动,Couette流动和通过圆柱的流动,可以给出准确的数值结果。最后,将所提出的方法应用于估计随机产生的多孔介质的渗透率,这进一步证明了其固有的几何柔性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号